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Average Monthly Arctic Sea Ice Extent
September 1979 - 2017
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Observations show small impact of cloud-sea
ice feedbacks on observed warming
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MODIS Visible Image July 23, 2007
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MODIS Visible Image September 30, 2007
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Detection and Attribution of human-
caused Arctic change?

Why? What tools are best for ?

THE COMMUNITY EARTH
SYSTEM MODEL (CESM) LARGE
ENSEMBLE PROJECT

A Community Resource for Studying Climate Change
in the Presence of Internal Climate Variablility

BY |. E. KAy, C. Deser, A. PHiLLps, A. MAl, C. HANNAY, G. STRAND, |. M. ARBLASTER, S. C. BATEs,
G. DaNABASOGLU, ). EDWARDS, M. HOLLAND, P. KUSHNER, J.-F. LAMARQUE, D. LAWRENCE, K. LINDsAY,
A. MipDLETON, E. MuNOZ, R. NEALE, K. OLEsON, L. PoLvani, AND M. VERTENSTEIN

By simulating climate trajectories over the period 1920-2100 multiple times with small atmo-
spheric initialization differences, but using the same model and external forcing, this commu-
nity project provides a comprehensive resource for studying climate change in the presence

of internal climate variability.

https://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00255.1
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lIntroduce CESM1 1850 control run
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Global Mean Surface
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What has
happened and
what will
happen under
large increases
in greenhouse
gases (1000
ppm CO2
equivalent by
2100)?

Global Surface Air Temperature

Arctic Surface Air Temperature
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Arctic vs. Global Warming (1979-2012)
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September Arctic Sea Ice Extent

(million km?)

Arctic sea ice loss
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Adapted from Figure 1 Kirchmeier-Young et al. 2017



September Arctic Sea Ice Extent
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September Arctic Sea Ice Extent
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How predictable is the timing of a
summer ice-free Arctic?

Frequency of Occurrence
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Internal
variability
introduces ~20
year uncertainty
in the exact year
when the Arctic
goes ice-free in
September.



Arctic (70-90 N) Surface Air Temperature in the CESM-LE
When does a detectable forced climate change signal emerge?

vvvvvvvvvv

- 1850 -
__ 260 historical+RCP8.5 270:
< : < 268
=" 255 :m f
- : _
3 : o 266
€ 250 £ i
= I S 264|

v

245 o o

280 - ] 260} .o

00

270/

265

S

S

260/

Summer T (K)
Fall T (K)

255

250 ..

268;""""""""::. """""""""""""""""""""""" ; 245_

||||||||||||||||||

1950 2000 2050 2100 1950 2000 2050 2100

Figure courtesy Marika Holland/NSF 2018 Polar Modeling Workshop



CESM-LE Monthly Mean Arctic Surface Air Temperature
1850 hlstograms vs. 2005-2016 hlstograms
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Can we detect the emergence of forced
change with current and future
satellites?

MOPITT




CloudSat (radar) and CALIOP (lidar) Synergy

December 2006 Arctic Clouds

DETECTED BY LIDAR ONLY
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When compared to temperature,
comparing models and observed clouds
and precipitation is more difficult...

why?

Let’s discuss!



Simulators help to reliably compare remote
sensing observations to models

Climate Satell Trusted Satel
atellite . atellite
Model , comparison . Observed
— simulator retrieval :
e radiances
,</x </K The A-Train

Take Home Message: When satellite simulators accurately
mimic the observational process, they enable “apple-to-
apple” comparisons between models and observations.



Established Example: Satellite simulators
for clouds and precipitation (“COSP”)

COSP Flow Chart
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Figure credit: Jim Boyle, Alejandro Bodas-Salcedo and Stephen Klein

COSP Description Paper — Bodas-Salcedo et al. 2011
https://journals.ametsoc.org/doi/10.1175/2011BAMS2856. 1



Arctic Total Cloud Cover (%)

Demonstrating the importance of
simulators for model evaluation
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Figure from Kay et al. 2016 - DOI: 10.1007/s40641-016-0051-9



CESM1 matches observations: no change in summer, more

clouds over open water than over sea ice in fall

a) b) 8
77 Over open water
6! Over sea ice
Es|
54
Summer E
23
2 L
1 L
N I st
0 5 10 15 20 25 30 35
CESM1-COSP liquid cloud fraction (%)
8
c d
) ) 7 Over open water
| Over sea ice
6 f
o
Fall g
=
=
<

N @
T T

—
T

o

. Intermittent mask . Perennial mask 6 5 10 15 20 25 30 35
CESM1-COSP liauid cloud fraction (%)

Morrison et al. (in review)




Can we detect the emergence of forced
change in clouds and precipitation with
current and future satellites?

CALIPSO =N




Results from a single ensemble member offshoot
experiment from the CESM Large Ensemble.

CESM1 Arctic Fall Low Cloud Cover (%)
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AHH!!! The model cloud cover variable (CLDLOW)
gives a different answer than the lidar simulator
variable (CLDLOW _LIDAR).

Why?

Using the model native cloud cover fields (i.e.,
CLDLOW) isn’t telling you about the clouds that
would be observed by a spaceborne lidar like
CALIPSO (i.e., interacting with visible light).



What about precipitation? E.g., summer Arctic rain

CESM1 Arctic Summer Rain and Air Temperature
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Summary — Kay et a

1) Forced Arctic climate change is currently emerging
above internal climate variability. Timing depends
on the metric for emergence and the physical
variable under consideration.

2) Large initial condition ensembles and simulators
provide essential tools for connecting models and
observations to understand the emergence of
forced climate change.



EXTRA



Notes on Variables —
Variables in red are from the satellite simulators

CLDTOT is the model total cloud cover.
CLDLOW is the model low cloud cover.

CLDTOT_CAL is the total cloud fraction detected by a lidar (like
CALIPSO)

CLDLOW _CAL is the low cloud fraction detected by a lidar (like
CALIPSO)

SNOW is the annual mean snow amount.
RAIN is the annual mean rain amount.

RADAR_SNOW is the average annual frequency of snow detected
by a 94 GHz radar (like CloudSat).

RADAR_RAIN is the average annual frequency of rain detected by a
94 GHz radar (like CloudSat).



Context from the 2018 NASA Decadal Survey...

TARGETED SCIENCE & SCI/APPS PRIORITIES RELATED ESAS 2007 IDENTIFIED CANDIDATE MEASUREMENT ESAS 2017 DISPOSITION

OBSERVABLE APPLICATIONS SUMMARY ‘MI VLI and POR NEED/GAP APPROACH
e Cloud coverage & optical - H-1a,1b.1c,3b,4b  ESAS 2007: ACE POR does not Similar to: CloudSat, DESIGNATED
TO-5 properties - W-1a, 2a. W3a. 4a, 9a, address diurnal cycle CPR/EarthCARE PROGRAM ELEMENT
. .. L. 10a POR: CPR/EarthCARE. and does not cover ° o
Clouds, S SRR R S-1c, 4b GPM, CloudSat. MODIS. precipitation after ﬁ?g:;&z::d ml::::le?;q e Maximum development cost

Convection, & rate - E3a VIIRS, SSMI, TROPICS EarthCARE., GPM L. . $800M: considerable
SR @ Liquid and ice waterpath . C_2a, 2g, 2h, 3£, 5d, 7e, and SSML or ® Sampling with 1-4 km horiz &250 . ;isic vatue in TO-5

® Convection & cloud sh snowfall. convection, o vc?rt ££s0 lution & 0.2 mm/hr being coordinated in time

dynamics and cloud dynamics precip (rain) accuta.cy . with TO-1 and TO-2
® Diurnal cycle of clouds and after EarthCARE DO R ST

(1 m/s)

® Spatial resolution ~4-10 km for
global precip & snowfall; 1mm/hr
snowfall accuracy

precipitation




Challenge: How can you leverage a large ensemble
if you only have one member with your diagnostics?

Arctic ANN Mean Surface Temperature ; CESM1
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